Megabeben in Japan - Satellitenbilder zeigen Tsunami-Verwüstungen

Welche radioaktiven Stoffe sind besonders gefährlich?

Sehr schädlich sind die Jod-Isotope 131 und 133 sowie die Radionuklide des Cäsiums. Radioaktives Jod ist in den Tagen nach einem Strahlenunfall wesentlich für Gesundheitsschäden verantwortlich. Von den radioaktiven Jod-133-Teilchen ist bereits nach einem Tag die Hälfte zerfallen. Bei Jod-131 beträgt die Halbwertszeit acht Tage. Deutlich länger, bis zu 30 Jahre  dauert es, bis sich die Menge an radioaktiven Cäsium-Isotopen halbiert hat. Im Gegensatz zu Jod kann die Aufnahme von Cäsium nicht durch Tabletten abgemildert werden. Die Radionuklide gelangen in die Körperzellen und können vor allem Muskeln und das Nervensystem schädigen. Kommt es zu einer Explosion eines Reaktorbehälters, der Kernbrennstäbe enthält, werden vor allem Strontium- und Plutonium-Partikel in die Atmosphäre geschleudert. Beide Stoffe können sich in Knochen und Leber anreichern. Hier können sie Jahrzehnte überdauern und bereits in geringen Mengen Gesundheitsschäden verursachen.

Wie wirken Jodtabletten?

Künstlich zugeführtes Jod schützt vor der Aufnahme des radioaktiven Isotops Jod 131 . Die Schilddrüse benötigt von Natur aus Jod. Der Mensch nimmt das Element mit dem Trinkwasser und der Nahrung auf. Atmet er jedoch Jod 131 ein, kann dies die Schilddrüse akut schädigen und Krebs auslösen. Wer allerdings in Wasser aufgelöste Jodtabletten schluckt, kann den Bedarf der Schilddrüse an dem Element für einige Tage decken. "Das Organ ist dann gesättigt und nimmt kein radioaktives Jod mehr auf." Gegen zahlreiche weitere radioaktive Stoffe in der Luft gibt es praktisch keinen Schutz. Ein einfacher Atemschutz ist kaum in der Lage, das Einatmen flüchtiger radioaktiver Stoffe zu verhindern. Lebensmittel aus belasteten Regionen können auch langfristig kontaminiert sein. In Deutschland raten Ärzte derzeit dringend von der Einnahme von Jodtabletten ab. Wenn keine akute Strahlenbelastung vorliegt ist die Einnahme nicht nur sinnlos, sondern kann auch Gesundheitsschäden verursachen. Die Einnahme von Jod kann zum Beispiel eine Überfunktion der Schilddrüse auslösen.

Wie sind die Reaktorblöcke von Fukushima-1 aufgebaut? Klicken Sie auf das Bild für eine Großansicht © Golden Section Graphics

Die Atomkraftwerke in Fukushima arbeiten mit Siedewasser-Reaktoren. Wie funktionieren sie?

In einem Reaktordruckgefäß wird bei dieser Technik mithilfe von Kernenergie Wasser verdampft. Darin befindet sich der Reaktorkern, durch den Wasser strömt. Darin lagern Brennstäbe – das eigentliche radioaktive Material –, die durch eine Metallhülle aus Zirkonium geschützt sind. Durch die Kernspaltung wird Wärmeenergie erzeugt, die das Wasser zum Sieden bringt. Der Dampf hat einen Druck von rund 70 Bar und treibt eine Turbine an, die dann einem Generator die nötige Energie zur Stromerzeugung liefert.

Warum steigen auch die Temperaturen in den abgeschalteten Reaktorblöcken 4, 5 und 6 in Fukushima-1?

Bereits einige Zeit vor dem Erdbeben am 11. März wurden die Reaktoren 4 bis 6 abgeschaltet. "Das Problem ist, dass in den Blöcken zumindest noch die letzte Kernbeladung liegt", sagt Christoph Pistner, Nuklearexperte vom Öko-Institut in Darmstadt . Die zuvor im Reaktordruckgefäß befindlichen Kernbrennstäbe lagern wohl seit der Abschaltung in Abklingbecken. "Die Brennstäbe sind natürlich noch sehr heiß und müssen dauerhaft gekühlt werden", sagt Pistner. Ein Ausfall der Wasser- oder einer Luftkühlung könnte also die Ursache für den Anstieg der Temperaturen in den Blöcken sein. Mitunter müssen ausrangierte Brennstäbe noch über Jahre hinweg gekühlt werden, da sie viel Hitze abgeben. "Im Prinzip kann es noch dazu kommen, dass die Brennstäbe Schaden nehmen und auch schmelzen", sagt der Nuklearexperte. Allerdings sind die Brennelemente in den Blöcken 1 bis 3 weitaus reaktiver und damit gefährlicher als bereits genutzte Brennstäbe, die in Abklingbecken lagern.

Was passiert bei einer Kernschmelze?

Fällt die Kühlung in einem AKW aus, kann sich der Reaktorkern auf bis zu 2000 Grad Celsius erhitzen – die Brennstäbe schmelzen. Das heiße Gemisch aus Uran oder Uran-Plutonium kann sich dann durch die Stahl-Schutzhülle des Reaktorkerns fressen, im schlimmsten Fall bis in den Sicherheitsbehälter (Containment). Radioaktivität in großen Mengen gelangt ins Erdreich. Ein anderes Szenario wäre, dass die Kernschmelze auf das Meerwasser trifft, das zur Notkühlung in den Reaktor gepumpt wird. Eine gewaltige Knallgasreaktion könnte das strahlende Material dabei in die Atmosphäre schleudern. 

Gibt es nun Kernschmelzen in den Reaktoren 1 bis 4 von Fukushima-1 oder nicht?

Die Meldungen über den Zustand der Kernbrennstäbe sind widersprüchlich. "Von außen lässt sich nichts erkennen, die gesamte Steuerung der Reaktoren ist zerstört", sagt Sebastian Pflugbeil, Präsident der Gesellschaft für Strahlenschutz . Allerdings sei die Kernschmelze in den Blöcken "so sicher wie das Amen in der Kirche". Der Physiker schließt das aus dem bisherigen Ablauf des Unfalls. Nachdem die Stromversorgung infolge des Bebens abgebrochen war, konnten Techniker auch die Notaggregate nicht anwerfen. Dieselgeneratoren wurden vom Tsunami zerstört. Schließlich wechselte man auf batteriebetriebene Dampfpumpen. Nach acht Stunden war deren Leistung aufgebraucht. "Damit ist der Kühlmittelfluss im Hauptkreislauf der Anlage zum Erliegen gekommen", erklärt Pflugbeil. "Das Kühlmittel ist unweigerlich verdampft, die darin liegenden Brennstäbe lagen nach und nach blank." Eine Schmelze sei dann nicht mehr aufzuhalten. "Dies ist in allen drei Blöcken der Fall." Auch die Wasserstoffexplosionen, die die Reaktoren 1 bis 4 erschüttert haben, sind Indizien dafür. "Solche Explosionen passieren nur, wenn Kernschmelzprozesse laufen", sagt der Physiker Pflugbeil.

Wie kam es genau zu den Wasserstoffexplosionen in Reaktor 1 bis 4?

Das Kühlwasser reagierte vermutlich mit Zirkonium aus der Hülle der Brennelemente. Dabei entsteht große Hitze. "Dann spaltet sich das Wasser und es entsteht Wasserstoff", erläutert Pflugbeil. Die Atome dringen über kleinste Ventile und Dichtungen in den äußeren Reaktorraum und sammeln sich um den Behälter mit den Brennstäben. "Wenn dann noch Sauerstoff in entsprechender Konzentration vorliegt, reicht ein kleiner Funken und die Sache geht in der Luft."  Das ist bislang in drei Fällen passiert. Die Brände in Reaktor 4 sollen ebenfalls auf eine Wasserstoffexplosion zurückgehen.

Was sagt die internationale Bewertungsskala (INES) aus?

Eine Internationale Bewertungsskala von Atomunfällen (Ines) soll den Atomsicherheitsbehörden und Betreibergesellschaften von Kernkraftwerken helfen, den Schweregrad eines Unfalls zu bewerten. Die Skala reicht von 0 bis 7, von einem Ereignis mit geringer sicherheitstechnischer Bedeutung bis hin zu einem katastrophalen Unfall. Einen Tag nach dem Beben vor Japans Küste stuften die Behörden in Japan die Lage in Fukushima-1 als einen "Unfall mit lokalen Konsequenzen" ein (4). Zu diesem Zeitpunkt war es nur in Block 1 zu einer Wasserstoffexplosion gekommen. Stufe 4 bedeutet eine geringe Freisetzung von radioaktiven Elementen. Die Belastung für die Bevölkerung sei in etwa doppelt so hoch wie sonst. Für die Arbeiter am Kraftwerk kann der Unfall allerdings tödliche Folgen haben. Eine Woche nach dem verheerenden Unfall hat die japanische Atomsicherheitsbehörde den Unfall auf heraufgestuft, auf einen "ernsten Unfall" der Stufe 5 . Das heißt, es kommt zu einer "begrenzten" Freisetzung von Radioaktivität und dem Einsatz einzelner Katastrophenschutzmaßnahmen.

Einrichtungen außerhalb Japans, wie das Institut für Wissenschaft und Internationale Sicherheit (Isis) in Washington und die französische Atomsicherheitsbehörde (ASN) stuften das Ereignis in Fukushima-1 anhand von Satellitenbildern und den verfügbaren Informationen aber mittlerweile in die Kategorie 6 ein: ein Unfall mit erheblicher Freisetzung von Radioaktivität, infolge dessen alle Katastrophenschutzmaßnahmen ergriffen werden müssen. Sogar die Stufe 7 sei möglich. Diese ist bisher lediglich einmal bei dem Unfall in Tschernobyl 1986 ausgerufen worden.